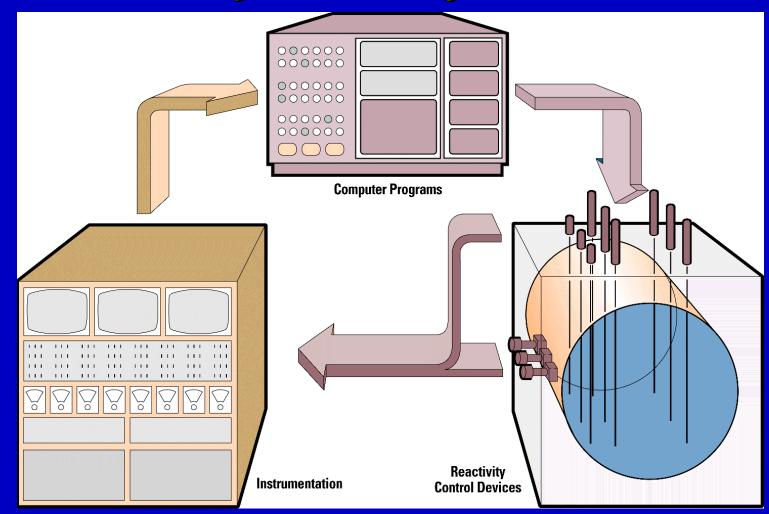


CANDU Safety #11 - Reactivity Control

Dr. V.G. Snell Director Safety & Licensing



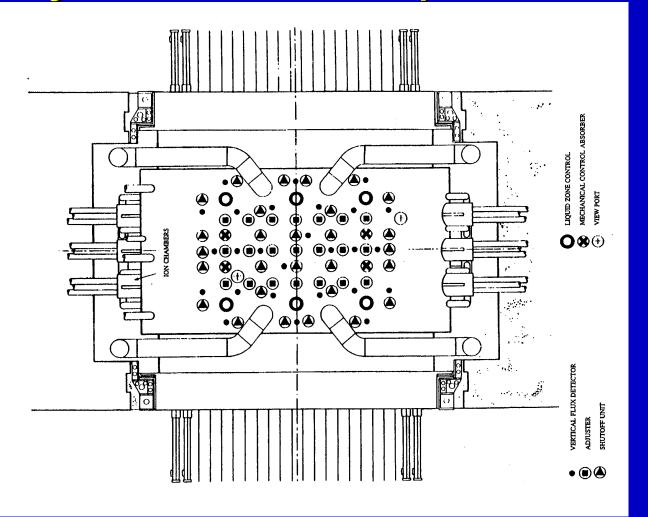
Basis for Reactivity Control

- λ CANDU
 - small reactivity feedback: continuous automatic control
 - dual redundant digital computers
 - small rates of reactivity increase
 - just enough reactivity range for short term control
 - refuelling is the long-term control
- λ LWRs
 - large negative feedback: "set and forget"
 - manual or semi-automatic control
 - large reactivity depth to compensate for fuel burnup

Basic Reactivity Control Logic - Short Term

Digital Computer Control

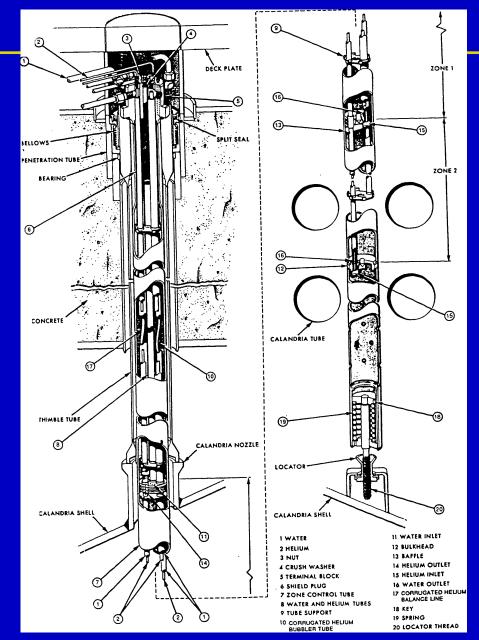
- **λ** 2 identical computers
 - "master" (controlling), "slave" (active standby)
 - control, alarms and display
 - all major functions duplicated (except for fuelling)
- λ hardware and software self-checking, external timer
- λ input / output rationality checking
- λ fault in one computer transfers control to the other
- **λ** fault in both computers causes station shutdown
- λ experience: availability of >99% for each computer



Reactivity Devices

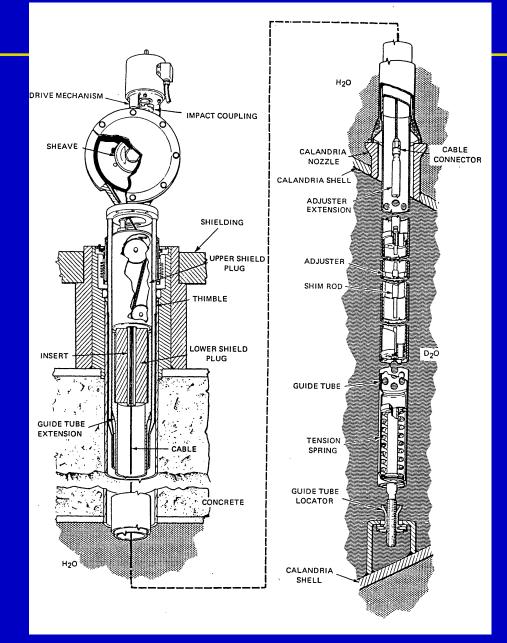
Reactivity Control Device (number)	Typical Reactivity Rate (mk/sec)	Typical Reactivity Range (mk)
Light-water zone controllers (14)	±0.14	7
Adjuster Rods (21)	±0.1 per bank (7 banks)	15
<i>Mechanical Control Absorbers (4)</i>	±0.1 - driving -3.5 - dropping	10
Moderator poison	-0.0125 +0.0008	40+
Refuelling		0.4 per channel
Shutoff Rods (SDS1)	+0.6 - withdrawal -40 - trip	-80
<i>Liquid Injection (SDS2)</i>	-35 - trip	-400

Reactivity Control Devices - Top of Reactor View



24/05/01

Zone Controllers


- λ primary means of normal control
- λ bulk power control and spatial flux control
- λ they work by varying level in H₂O filled compartments
- 14 controllers in 6 vertical tubes
- λ fill on reactor trip

Adjuster Rods

- λ 21 rods, in 7 banks
- λ normally fully inserted for flux shaping
- λ used for partial xenon override to recover from trip
- used in case of unavailability of fuelling machine
- **λ** freeze on reactor trip

Absorber Rods

- λ 4 rods, normally out of core
- λ like shutoff rods but no spring
- λ drive in / out or drop by releasing clutch
- λ used to supplement zone controllers
- λ fast power reduction for abnormal events (3 seconds) - stepback
- λ prevent reactor from going critical on shutoff rod withdrawal
- λ dropped on reactor trip

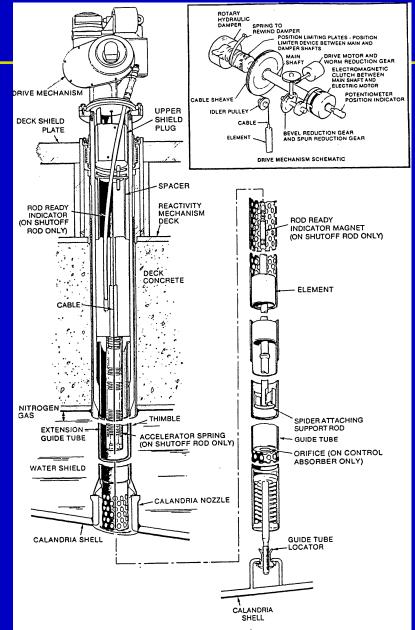
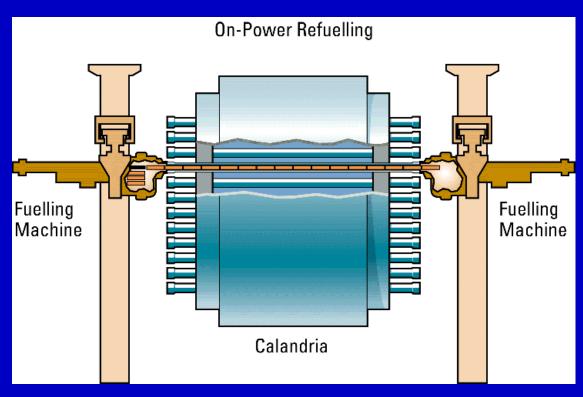



FIGURE 2.3.1-26 SHUTOFF AND MECHANICAL CONTROL ABSORBER UNITS

On-Power Fuelling

- λ long term reactivity control
- λ long term power shape control
- typically 2 channels / day
- fuel management code advises on channels to be refuelled
- refuelling operation mostly automatic & completely remote

Hardware Safety Interlocks

- **λ** if reactor is tripped:
 - prevent adjuster / absorber removal
 - prevent moderator poison removal
- cannot withdraw shutoff rods if shutdown system 2 is unavailable (not re-poised)
- **λ** cannot withdraw excess number of adjusters simultaneously

Setback

- **λ** reduces power at controlled rate if normal limits exceeded
- **λ** initiated by control computers
- **λ** end points vary from 60% to 0.02% full power
- λ examples:

Variable	Initiating Setpoint	Power change (%FP/sec)	Endpoint (% Full Power)
High local flux	110%	0.1	60
High moderator temperature	79 C	1	2
High boiler pressure	4.83 MPa	0.5	8
Turbine trip	2/3 contacts	1	60

λ

Stepback

examples:

- **λ** fast reduction of power, may avoid reactor trip
- λ initiated by control computers
- **λ** releases clutches on control absorbers, full or partial drop

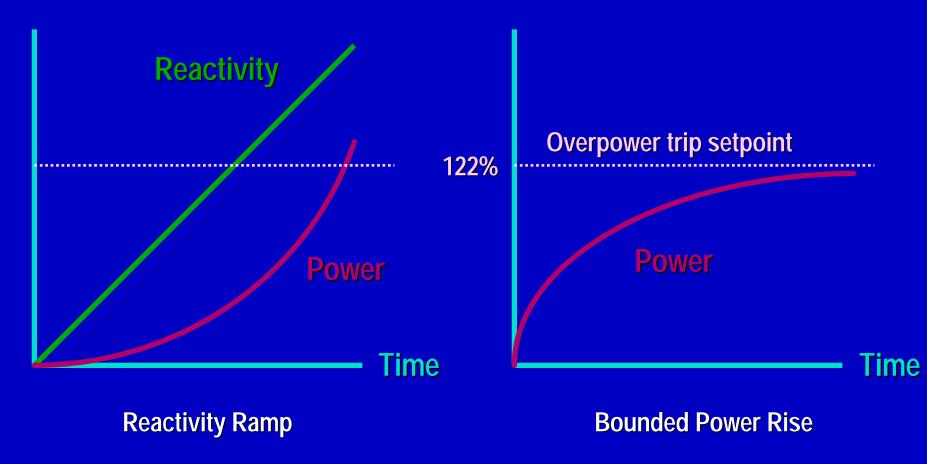
Condition	Initiating Setpoint	End-point (%FP)
Heat transport pump failure	1 pump trip	1
High heat transport pressure	10.24 MPa	0.5
High log rate rise in power	3.3% / sec	0
Low moderator level	75.5 cm	0.5

Accident Analysis - Loss of Reactivity Control

- λ definition: reactor regulating system malfunctions so as to cause increase in local or bulk power
- **λ** defences:
 - setback (not credited)
 - stepback (not credited)
 - Shutdown System 1 independent of control computers
 - Shutdown System 2 independent of control computers
- a early experience: > 1 loss of reactivity control per year on average; all stopped by shutdown system
 - improved with addition of setback / stepback
 - current design target: 1 per 100 years

Acceptance Criteria

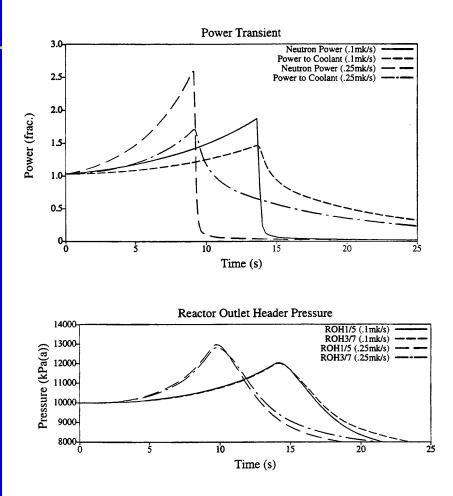
- **λ** Class 1 dose limits set by AECB
- λ two effective trips on each shutdown system where practical
 - prevent fuel sheath failures
 - **λ** no dryout or limited time in dryout
 - λ not the same as burnout in a LWR
 - prevent heat transport system boundary failure
 - ⋆ pressure <110% design for SDS1, <120% for SDS2</p>
 - **x** no pressure tube failure due to overheating



Cases Analyzed

- **λ** increase in bulk power
 - power continues to rise, or
 - power stops rising just below neutron trip setpoint
- **λ** increase in local power
 - slow increases from distorted flux shapes
 - hundreds of cases
 - basis of Regional Overpower Protection System design
- various initial power levels from full power to shutdown
 primary circuit pressurized or depressurized at zero power

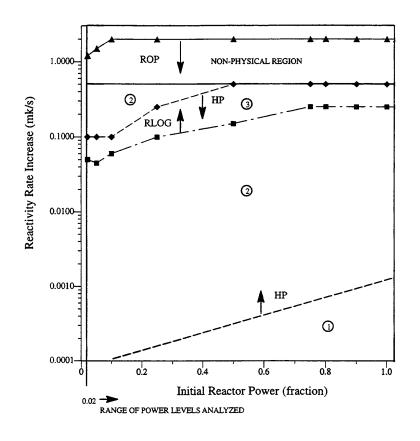
Typical Cases Analyzed


Relevant Trips

- λ high neutron power trip (122%)
- λ high rate log neutron power trip
 - 10% / sec for SDS1, 15% / sec for SDS2
- **λ** high heat transport system pressure trip
 - 10.34 MPa, if power >70%, 3-5 second delay
 - 10.55 MPa on SDS1, 11.72 MPa on SDS2, immediate
- **λ** low coolant flow if power >0.1% (SDS1)
- **λ** low core differential pressure if power >0.3 5% (SDS2)

Reactivity Ramp

- λ linear reactivity ramps
- varied from very slow to the fastest the control devices can achieve
- **λ** system simulations to predict
 - reactor physics
 - fuel temperature
 - heat transport system thermohydraulics
 - pressure tube temperature
- key calculation: critical versus actual heat flux for hottest fuel element



Relative Power and ROH Pressure for LORC at 0.1 and 0.25 mk/s from 103% FP, SDS2 High Pressure Trip (without LRVs)

Trip Coverage Map

- purpose: to show for each shutdown system there are at least 2 trips for an accident starting from various operating states
- **λ** whole power range
- λ various initial conditions
- in some cases only one trip is practical: e.g., fast reactivity ramps from very low power

- ▲ Detailed analysis performed for high neutron power trip (ROP _____
- Detailed analysis performed for high HTS pressure trip (HP ----)
- Detailed analysis performed for high rate log trip (RLOG -----)
- O Number of effective trips

SDS2 Trip Coverage Map for Loss of Reactivity Control – Fuel and Fuel Channel Criterion (Fouled and Clean Steam Generators, Equilibrium Fuel)

Summary

- Now reactivity rates and small ranges because of on-power refuelling
- **λ** reliable redundant digital computer control
- large core means that spatial overpower protection is required for control & safety
- x setback, stepback and two shutdown systems provide defences against loss of reactivity control